Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 255: 128522, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38040141

RESUMO

In this investigation, we have explored the protective capacity of MoS2 QDs coated with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethyleneglycol) -2000] (DSPE-PEG) linked with (3-carboxypropyl) triphenylphosphonium-bromide (TPP), on the secondary structure of proteins in Alzheimer's disease (AD)-affected brain tissues. Using a cohort of fifteen male SWR/J mice, we establish three groups: a control group, a second group induced with AD through daily doses of AlCl3 and D-galactose for 49 consecutive days, and a third group receiving the same AD-inducing doses but treated with DSPE-PEG-TPP-MoS2 QDs. Brain tissues are meticulously separated from the skull, and their molecular structures are analyzed via FTIR spectroscopy. Employing the curve fitting method on the amide I peak, we delve into the nuances of protein secondary structure. The FTIR analysis reveals a marked increase in ß-sheet structures and a concurrent decline in turn and α-helix structures in the AD group in comparison to the control group. Notably, no statistically significant differences emerge between the treated and control mice. Furthermore, multivariate analysis of the FTIR spectral region, encompassing protein amide molecular structures, underscores a remarkable similarity between the treated and normal mice. This study elucidates the potential of DSPE-PEG-TPP-MoS2 QDs in shielding brain tissue proteins against the pathogenic influences of AD.


Assuntos
Doença de Alzheimer , Molibdênio , Animais , Humanos , Masculino , Camundongos , Doença de Alzheimer/tratamento farmacológico , Amidas , Encéfalo , Brometos , Molibdênio/farmacologia , Molibdênio/química
2.
RSC Adv ; 13(45): 31969-31988, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37915447

RESUMO

The aim of this work was to prepare a nonionic polymeric surfactant from a recycled product of poly(ethylene terephthalate) plastic waste, PET. In this respect, PET waste was subjected to reverse polymerization (depolymerization) via reaction with both ethylene diamine (EDA) in the presence of a catalyst and propylene glycol (PG) in the presence of a transesterification catalyst. The corresponding products obtained were poly amino amide (PETAA) and poly glycol ester (PETPG), respectively. The obtained materials reacted with oleic acid to produce N1,N4-bis(2-((E)-octadec-9-enamido)ethyl)terephthalamide (PETAA-OL) and 2-(2-(((E)-octadec-8-enoyl)oxy)propoxy)ethyl (2-(2-(((E)-octadec-9-enoyl)oxy)propoxy)ethyl) terephthalate (PETPG-OL). The prepared materials were characterized by FT-IR, 1HNMR, and elemental analysis. It was evaluated as a corrosion inhibitor for carbon steel used in the petroleum industry in the marine environment. Chemical, analytical, and electrochemical techniques were used for the evaluation of the corrosion inhibition efficiency of the prepared polymeric surfactants. The effects of the polymeric surfactant concentration and reaction temperature were studied. The inhibition efficiency was found to increase with increasing concentration and decrease with rising temperature. The inhibition due to the adhesion and adsorption of the polymeric material on the steel surface agrees with the Langmuir adsorption isotherm model. The amount of dissolved iron in the corrosive medium due to the corrosion process was estimated using atomic absorption spectroscopy (AAS). It was found that the dissolution of iron was decreased by adding the prepared nonionic surfactants. Potentiodynamic polarization data indicate the mixed-type nature of surfactant inhibitors. According to the potentiodynamic polarization data, the prepared surfactant boosts polarization resistance and inhibition performance by adsorbing on the metal/electrolyte interface. The addition of inhibitor molecules to the aggressive medium produces a negative shift in the open-circuit potential due to the retardation of the cathodic reaction. The surface morphology of steel was examined using SEM. A protective coating of inhibitor molecules forms on the steel surface, according to the SEM measurements of the surface. The data obtained from different techniques are in good agreement, indicating good inhibition efficiency of the prepared nonionic surfactants derived from plastic waste in a marine environment.

3.
Des Monomers Polym ; 26(1): 150-162, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37181152

RESUMO

Thiazol-based molecules have practically infinite biological implementation. Today, there are many medical applications for compounds containing the thiazole moiety owing to their presence in most clinically applied anticancer drugs, such as dasatinib, dabrafenib, ixabepilone, patellamide A and epothilone. In this study, the polycondensation, of a new group of thiazole-containing polyamides with the formulas PA1-4 was carried out by the interaction of 2-aminothiazole diphenyl sulfide and variable diacid chlorides in dimethyl formamide in the presence of potassium carbonate anhydrous as a catalyst. Fourier transform-infrared spectroscopy (FTIR) was initially used to figure out the PA1-4 structures, which were further characterized using solubility, gel permeation chromatography (GPC), X-ray diffraction analyses (XRD) and scanning electron microscopy (SEM). The solubility results revealed that the presence of heteroaromatic thiazole ring units and sulfur content in the polyamides main chain, made the solubility easier as it increases the chain packing distance. From the values of average molecular weight, it was clear that all synthesized polyamides have almost the same chain length which ranged from 37,561.80 to 39,827.66. Moreover, the thermogravimetric analysis (TGA) confirm that PA1-4 were thermally stable even at high temperatures especially the polyamides which were synthesized from aromatic diacid chlorides. Furthermore, the newly synthesized polyamides were investigated for their antimicrobial properties against different species of Gram-positive and Gram-negative bacteria and also against different fungi. The results revealed that compound PA2 showed the highest antibacterial activity. Also, their inhibitory activity against breast carcinoma cells (MCF-7 cell line) and colon carcinoma cells (HCT cell line) was evaluated. It was clear that there was an enhancement in the anticancer activity for the synthesized polyamides owing to the presence of the thiazole moiety as well as sulfur linkage. According to the results of the 50% inhibitory concentration (IC50), the synthesized polymers were found to be more active against the MCF-7 cell line than the HCT cell line.

4.
J Mech Behav Biomed Mater ; 141: 105795, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37001249

RESUMO

The present work aimed to fabricate a set of hybrid bioactive membrane in the form of bio-nanocomposite films for dental applications using the casting dissolution procedures. The formulation of the targeted materials was consisting of cellulose acetate/bioactive glass/hydroxyapatite/carbon nanotubes with a general abbreviation CA-HAP-BG-SWCNTs. The nanocomposites were characterized using XRD, FTIR, SEM-EDX and Raman spectroscopy. XRD, FTIR and SEM characters confirm the nanocomposites formation with good compatibility. The fabricated materials had a semi crystalline structure. The mechanical and thermal properties, as well as contact angle and bioactivity of the fabricated nanocomposites were investigated. The SEM images for showed beehive-like architectures with a thicker frame for the second material. All fabricated materials showed good thermal behaviors. Furthermore, the agar diffusion antimicrobial study showed that the prepared nanocomposites do not exhibit an antibacterial activity against five pathogenic bacterial strains. Additionally, cytotoxicity of a dental nanocomposite filling agent was evaluated. Vero normal cells were incubated with test materials for 72h at 37 °C and 5% CO2. Cell viability was detected using a SRB assay. All nanocomposites were mildly to non-cytotoxic to Vero cells at high concentration in contrast to the inhibitory effect of doxorubicin which was added at 10-fold lower concertation than the nanocomposites. Hence, the proposed nanocomposite is promising candidates for dental applications.


Assuntos
Nanocompostos , Nanotubos de Carbono , Animais , Chlorocebus aethiops , Durapatita/química , Células Vero , Nanocompostos/toxicidade , Nanocompostos/química
5.
Bioengineering (Basel) ; 10(3)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36978670

RESUMO

Hybrid materials are classified as one of the most highly important topics that have been of great interest to many researchers in recent decades. There are many species that can fall under this category, one of the most important of which contain biopolymeric materials as a matrix and are additionally reinforced by different types of carbon sources. Such materials are characterized by many diverse properties in a variety industrial and applied fields but especially in the field of biomedical applications. The biopolymeric materials that fall under this label are divided into natural biopolymers, which include chitosan, cellulose, and gelatin, and industrial or synthetic polymers, which include polycaprolactone, polyurethane, and conducting polymers of variable chemical structures. Furthermore, there are many types of carbon nanomaterials that are used as enhancers in the chemical synthesis of these materials as reinforcement agents, which include carbon nanotubes, graphene, and fullerene. This research investigates natural biopolymers, which can be composed of carbon materials, and the educational and medical applications that have been developed for them in recent years. These applications include tissue engineering, scaffold bones, and drug delivery systems.

6.
Biomedicines ; 11(3)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36979948

RESUMO

The hybridization between polymers and carbon materials is one of the most recent and crucial study areas which abstracted more concern from scientists in the past few years. Polymers could be classified into two classes according to the source materials synthetic and natural. Synthetic polymeric materials have been applied over a floppy zone of industrial fields including the field of biomedicine. Carbon nanomaterials including (fullerene, carbon nanotubes, and graphene) classified as one of the most significant sources of hybrid materials. Nanocarbons are improving significantly mechanical properties of polymers in nanocomposites in addition to physical and chemical properties of the new materials. In all varieties of proposed bio-nanocomposites, a considerable improvement in the microbiological performance of the materials has been explored. Various polymeric materials and carbon-course nanofillers were present, along with antibacterial, antifungal, and anticancer products. This review spots the light on the types of synthetic polymers-based carbon materials and presented state-of-art examples on their application in the area of biomedicine.

7.
J Polym Environ ; 31(6): 2519-2533, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36590138

RESUMO

The poly(vinyl alcohol) (PVA) and starch-based polymeric films with a ratio of 2:8 were prepared using solution casting followed by a solvent evaporation method. Four types of membranes with varied concentrations of grapefruit seed extract (GSE) i.e., 2.5-10 wt% was incorporated in the films. The prepared membranes were assessed for transparency test, mechanical properties, surface morphology, permeability test for O2, and antimicrobial properties. The PVA/starch-10% GSE loaded film showed excellent mechanical properties showing highest 1344 ± 0.7% elongation at break but poor optical transparency with 53.8% to 68.61%. The Scanning Electron Microscopic study reveals the good compatibility between the PVA, Starch, and GSE. The gas permeability test reveals that the prepared films have shown good resistance to the O2 permeability 0.0326-0.316 Barrer at 20 kg/cm2 feed pressure for the prepared membranes showing excellent performance. By adding the little amount of GSE into the PVA/starch blend membranes showed promising antimicrobial efficacy against MNV-1. For 4 h. incubation, PVA/starch blend membranes containing 2.5%, 5%, and 10% GSE caused MNV-1 reductions of 0.92, 1.89, and 2.27 log PFU/ml, respectively. Similarly, after 24 h, the 5% and 10% GSE membranes reduced MNV-1 titers by 1.90 and 3.26 log PFU/ml, respectively. Antimicrobial tests have shown excellent performance to resist microorganisms. The water uptake capacity of the membrane is found 72% for the PVA/starch pristine membrane and is reduced to 32% for the 10% GSE embedded membrane. Since the current pandemic situation due to COVID-19 occurred by SARSCOV2, the prepared GSE incorporated polymeric blend films are the rays of hope in the packaging of food stuff.

9.
Sci Rep ; 12(1): 14299, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35995923

RESUMO

A bionanocomposite based on biosynthesized poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and reinforced with silver@zinc oxide (Ag-ZnO) was synthesized in variable loadings of Ag-ZnO using the in-situ casting dissolution technique. The degradable biopolymer PHBV had been biosynthesized from date waste as a renewable carbon source. The fabricated products were investigated as promising antibacterial materials. The Ag-ZnO nanoparticles were also synthesized using the green method in the presence of Gum Arabic. The Ag-ZnO nanoparticles were loaded within the PHBV biopolymer backbone at concentration of 1%, 3%, 5% and 10%, PHBV/Ag-ZnO(1,3,5,10%). The chemical structure, morphology, physical and thermal properties of the PHBV/Ag-ZnO bionanocomposites were assessed via common characterization tools of FTIR, TGA, XRD, SEM and EDX. One step of the degradation process was observed in the range of 200-220 °C for all the obtained materials. The onset degradation temperature of the bionanocomposites have been noticeably increased with increasing the nanofiller loading percentage. In addition, fabricated products were investigated for their interesting antibacterial performance. A detailed biological screening for the obtained products was confirmed against some selected Gram-positive and Gram-negative strains S. aureus and E. coli, respectively. Overall, the bionanocomposite PHBV/Ag-ZnO(10%) was the most potent against both types of the selected bacteria. The order of bacterial growth inhibition on the surface of the fabricated bionanocomposites was detected as follows: PHBV/Ag-ZnO(10%) > PHBV/Ag-ZnO(5%) > PHBV/Ag-ZnO(3%) > PHBV/Ag-ZnO(1%).


Assuntos
Anti-Infecciosos , Óxido de Zinco , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/química , Biopolímeros , Escherichia coli , Hidroxibutiratos , Poliésteres/química , Prata/química , Prata/farmacologia , Staphylococcus aureus , Óxido de Zinco/química , Óxido de Zinco/farmacologia
10.
Polymers (Basel) ; 13(16)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34451330

RESUMO

Organic-inorganic nanoparticles, which can improve and modify the mechanical and chemical properties of polymers, have been used as fillers to prepare high-performance hybrid nanocomposite membranes. In this study, we explored whether the incorporation of organic nanofillers (graphene (G), graphene oxide (GO), carbon nanotubes (CNTs), or oxidized carbon nanotubes (CNTOxi)) into polysulfone (PSF) and montmorillonite (MMt)-modified PSF membranes could enhance membrane performance for the removal of heavy metal ions from contaminated solutions. These hybrid membranes were prepared by a phase inversion method using chloroform as the solvent. The surface morphologies of the membranes revealed good dispersibility of the organoclay and carbon nanomaterials in the PSF matrix. The hybrid nanocomposite membranes showed significantly improved thermal stability and mechanical properties as compared to the pristine PSF and PSF/MMt membranes. The adsorption efficiencies of these hybrid adsorptive membranes for Hg(II), Pb(II), Sr(II), Fe(III), Zn(II), Ni(II), Al(III), Co(II), Y(III), and Cr(III) were investigated. The PSF/MMt/CNTOxi and PSF/MMt/GO membranes exhibited the highest adsorption efficiencies. In particular, these adsorptive membranes showed selectivity toward Hg(II), and the Hg(II) extraction percentage was maximized at pH 2. The maximum Hg(II) adsorption capacities of PSF/MMt/CNTOxi and PSF/MMt/GO were 151.36 and 144.89 mg/g, respectively, and the adsorption isotherm was in approval with the Langmuir model. These hybrid nanocomposites can be used in water purification application.

11.
Photodiagnosis Photodyn Ther ; 35: 102458, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34325079

RESUMO

Water pollution and bacterial resistance are universal problems. Drugs and protocols have been employed to deal with involved microbes and pollutants but these customary chemicals have many limitations. It is essential to produce new methods and materials to deal with these deleterious microbes. In the present contribution, highly efficient and stable nanocomposite of platinum activated zinc oxide was synthesized by a new plant extract and surfactant assisted protocol. The cetylpyridinium chloride was applied as surfactant to obtain high dispersion of spherical ZnO. The platinum ions were reduced on the ZnO surface by the use of Rhazya stricta plant extract. The prepared nanomaterial was used for photoinactivation of multidrug resistant bacterium Escherichia coli (E. coli). The synthesized nanomaterial showed strong E. coli inhibition efficiency in the presence of light and the observed diameter of zone of inhibition was 21 ±0.4. The effect of light on the inhibition of E.coli was studied by measuring the activated oxygen radicals inside the bacterium cell. The surface morphology of E.coli before and after treatment with Pt/ZnO was studied by SEM. Such effect was not observed in dark. The toxicity of the synthesized nanomaterials was also studied through haemolytic activity and the result shows that the nanomaterial prepared by the said method has very low toxicity. The photocatalytic degradation of methylene blue (MB) was also investigated in the presence of the synthesized nanomaterials. Effect of different parameters such as concentration of Pt/ZnO, Irradiation time and dye concentrations were also studied. An incredible photocatalytic deprivation of MB (98 %) was observed for Pt/ZnO nanocomposite as compared to individual Pt (48%) and ZnO (71%) nanoparticles after 5 minutes of irradiations. Further research is required to investigate the applications of Pt/ZnO nanocomposite.


Assuntos
Nanocompostos , Fotoquimioterapia , Óxido de Zinco , Catálise , Escherichia coli , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Tensoativos
12.
Biomed Pharmacother ; 116: 109024, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31150990

RESUMO

This work aimed to design and synthesize a safe nonsteroidal anti-inflammatory drug NSAIDs agent based on Naproxen scaffold. The structure of compounds 6-21 established on the basis of different spectral data. Anti-inflammatory and analgesic profile were examined for synthesizing compounds. The compounds 6 and 17 have shown a higher anti-inflammatory potency than Naproxen. The compounds 16, 19 and 21 have exhibited the highest analgesic potency compared to other tested compounds. The synthesized compounds have shown negligible ulcerogenic effect and may be considered as safer drugs than naproxen for treating inflammatory conditions. The molecular docking against COX-2 was performed, it verified that compound 6, 17 show stronger interactions with COX-2. This may result in a better inhibitory effect on COX-2. The best generated QSAR model shows correlation between BCUT_SMR_3 and vsurf_Wp6 with biological activity. ADMET in silico showed that these compounds are a good oral bioavailability without observed carcinogenesis affect.


Assuntos
Analgésicos/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Desenho de Fármacos , Simulação de Acoplamento Molecular , Naproxeno/síntese química , Naproxeno/farmacologia , Relação Quantitativa Estrutura-Atividade , Analgésicos/química , Animais , Anti-Inflamatórios não Esteroides/química , Ligantes , Naproxeno/química , Naproxeno/farmacocinética , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...